

Prefabricated buildings in East Europe - a retrofit challenge and opportunity

Botici A.¹, Ungureanu V.¹, Ciutina A.¹, Nagy Zs.², Talja A.³, Fülöp L³.

- ¹ Politehnica University of Timisoara
- ² Tehnical University of Cluj
- ³ VTT Tehnical Research Centre of Finland

Strategies for cost-optimal energy efficient and sustainable building retrofit

CURENT ISSUES AND APPROACHES FOR RETROFITTING OF LARGE PREFABRICATED CONCRETE RESIDENTIAL BUILDINGS

- Introduction
- Statistics
- Critical issues
- Possible interventions
- Structural design
- Energy assessment

 Current energy policy and climate mitigation goals require distinct reductions of the primary energy demand and greenhouse gas emissions in the building sector.

The existing building stock represents a special challenge since it proves very difficult to activate the large existing reduction potentials because of a variety of institutional, economic, informational and social reasons. Clear-cut technically and economically optimized retrofit strategies and policy instruments for different types of existing buildings are needed.

- In the present context, about one third of the Romanian population lives in collective residential buildings with concrete structure including large prefabricated panels, built from 1953 to 1989.
- There is a need for guidelines and standardized approaches for different building types aiming at reducing the complexity which arises from the vast built space.

- thermal and waterproof insulation and energy economy;
- acoustic protection;

some of existing buildings (mostly those built before the '70) rise problems regarding:

- strength and stability;
- safety in exploitation,
- aesthetics and interior space partitioning

5

Strategies for cost-optimal energy efficient and sustainable building retrofit

Introduction - Statistics - Critical issues -Possible interventions - Structural design - Energy assessment

Strategies for cost-optimal energy efficient and sustainable building retrofit

Introduction – Statistics - Critical issues -Possible interventions – Structural design - Energy assessment

Statistical data: existing building stock in Timisoara

LIVING TYPOLOGY

The urban area of Timisoara is divided into 10 districts with a total of 21.837 buildings of different types:

- individual buildings (15.039)
- multiple flats (3.639), having a height regime of 1 to 3 stories;
- collective buildings 5 to 11 stories.

The living field accommodate 122.195 flats, with a combined livable surface of 4.372.696 mp and 277.944 rooms.

From the total of flats, 71,3% are collective buildings, 28,7% are individual buildings.

Buildings in Timisoara were made out of large prefabricated panels were executed in 3 main stages using different typologies of standard projects:

1962-1975 - densification: 70 unit/10.000m²; distance between units of 60 m; Flats with relatively small living areas.

<u>1975-1982</u> - major densification; distance between units approximately 15 m; flats with relatively small living areas; commercial areas were integrated on the first floor.

1982-1989 - densification of 80 unit/10.000m²; distance between units having approximately 40 m and afferent to those, multiple community buildings

3 types of standard projects built with high frequency:

- -I.P.C.T. project type 744 used between 1962-1975
- -I.P.C.T. project type 770 used between <u>1975-1982</u>
- -I.P.C.T. project type 1340 used between 1975-1982

At the basis of the 770 project realized in 1978 there were 3 major typologies (series) each of them being and having the cross-sections(Pa1-Pa4; Pb1--Pb4) assembled in 5 known ways to realize an assembly In sections (middle- middle, point-middle, middle-point, middle-end). The 3 project series (Pa; Pb; Pc) have different characteristics regarding orientation, accessibility, position of vertical circulation, layout dimension, etc. Pa and Pc series have double orientation while Pb series was realized with a simple orientation. Pc series are especially made to connect L or U sections, these series being used in various combinatios with other series. These are used mostly to solve straight or splay angles.

I.P.C.T. project type 770

I.P.C.T. project type 744

I.P.C.T. project type 1340

VTT TECHNICAL RESEARCH CENTRE OF FINLAND Politehnica University of Timisoara

Introduction – Statistics - Critical issues - Possible interventions – Structural design - Energy assessment

Residential areas - CURRENT STATUS

Social issues regarding habitants:

- inadequate interior space regarding the number of bedrooms and living area;
- poor division of interior space;
- high maintenance costs;
- poor thermal and noise insulation;
- nonexistent external residential spaces i.e. green spaces, children's playgrounds, adequate parking lots;

Urban major disfunctionalities:

- lack of green spaces and parking
- lack of concern for the maintenance of overall building facades, cornices, balconies
- non-unitary rehabilitation interventions (the attic) of the assemblies
- abusive extensions of buildings at ground level
- mix of collective housing and individual homes, placed at a relatively short distance
- lack of green spaces and parking
- lack of concern for the maintenance of overall building facades, cornices, balconies
- non-unitary rehabilitation interventions (the attic) of the assemblies

Interventions on apartments by redesigning interior spaces:

The goal of this particular research is:

- to configure different types of flat reconfiguration, and to possible find ways of grouping them into the existing structure.
- determine the main advantages of these matrix;
- to conform them to current design codes;

Interventions on apartments by redesigning the interior spaces:

I.P.C.T. project type 744: <u>1962-1975</u>

Existing walls are:

- structural, of diaphragm type, large precast concrete panels
- nonstructural for partitioning purposes.

Exterior walls are: large precast concrete panels, three layered,

A. Interventions by reconfiguring the areas delimited by vertical spaces.

- repartitioning through redesign of interior spaces and conversion of nonstructural walls
- reconfiguration through redesigning and extending the openings in the diaphragm walls;

Developing optimal structural surface area for openings taking into account:

- the period in which the panels were made (structural: reinforcement and seismic conformation)
- •building lifecycle and capacity to increase the comfort of living

Expansion of existing flats through horizontal union. В.

- The pairing of two apartments from the same storey and turning them into one apartment.
- This kind of intervention needs imposes on reorganization of interior areas through major interventions on vertical structural diaphragm walls.
- From a social stand point, a clearance of the public zone allocated for parking lots is resulting.
- It conducts to urban decrease of densification.

C. Expansion of existing flats through vertical union.

- The pairing of two apartments at different storeys and turning them into one apartment by creating interior stairs.
- Creating flats with ample living areas and increased comfort.
- This kind of expansion imposes interior reorganization of areas through major interventions both on vertical structural diaphragm walls as well as structural floors.
- It conducts to urban decrease of densification.

Interventions on the attic areas:

05/0

Introduction – Statistics - Critical issues -Possible interventions – Structural design - Energy assessment

Interventions on apartments by redesigning interior spaces:

Preliminary structural analysis show that:

- Even in the case of high seismic intensities (such as 0,32g) the repartitioning of spaces is possible;
- The structural response remains about the same but considering limited intervention on walls;
- Strengthening of new openings is necessary;

Energy Consumption

(roughly equivalent to 4 tennis-courts) of tropical forest.

Energy Assessment

Existing building energy study

Energy study for classical thermal rehabilitation

Energy study for thermal rehabilitation using modern materials and solutions

CONCLUSIONS:

- There is a substantial building stock consisting of large prefabricated concrete residential buildings;
- There is a major necessity concerning the rehabilitation of this residential units;
- Concrete residential buildings present the largest retrofitting challenge in Eastern European countries; and one of the best opportunities to substantially improve energy efficiency of residential buildings on the large scale in the EU;
- There are modern technologies with a great potential regarding energy consumption economy.
- The goal is to systematically evaluate retrofitting strategies regarding their technological applicability, economic performance, impact on primary energy and CO₂-emissions, and interactions with other retrofit needs and to seek for adequate and tailored policy strategies and instruments, depending on building types, actors and institutional or country contexts.

Specifics of the retrofit market in Romania

- Market summary
 - Retrofitting potential

 Market psychographic

 Customer behavior
 - Market needs
 - Competition
 - Driving Forces
- Key-issues for success & Critical issues
- Success stories of the thermal retrofitting
 - Conclusions

Market summary

- Needs - Competition - Driving Forces - Keys & Critical issues - Success stories - Conclusions - Plans

Retrofitting potential

Population: 21,677,616 (2002)

Tendency: decreasing

GDP per capita: 12,000 Eur. (2008)

• Inflation rate:
5 %

• Unemployment rate: 4,4 %

Prefab concrete element buildings 161.347;

- Estimating average price of 1000 Eur/m²
- Considering 10%/year necessary to retrofit & invested value of 10% of the total value – estimated market: 1050 million Euro

Market psychographic

- Home is a priority
- Public area is out of focus
- Global view of facade neglected
- Lot of things to do for improvement
- Home interior

Home - exterior

Customer behavior

- Home ownership rate very high low mobility
- Global view of facade neglected "Not mine. Not my problem!" attitude.
- Nominal net income quite low (215 370 995 Eur.) monthly
- Level of trust quite low like most of East Europe.
- Young generation credits

front page article published by the Federation of Homeowners Association on the news that the government is launching a thermal rehabilitation program - Caption reads

"Keep eyes on the pocket, they are preparing a new cheating scheme masked as - Thermal rehabilitation program"

Market needs

To provide the opportunity for the people to express who they are

- Selection: a wide variety of material for retrofitting / redesign
- Accessibility: government program for energy savings, limited funds
- Customer design services: retrofitting solution, details provided for owner associations can improve the success!
- Competitive pricing: people don't know what they pay for

Competition

- New market not a big competition
- Pilot projects: started by different companies

 Insulation improvement: several projects, but numerically negligible, compared with the total number of buildings

Strategies for cost-optimal energy efficient and sustainable building retrofit

Market summary - Needs - Competition -

Driving Forces - Keys & Critical issues - Success stories - Conclusions - Plans

Driving Forces

Threat of new entrants

•EU + local funds should attract several companies in this business, capital requirement, brand

Suppliers

- •Raw material suppliers should influence the energy auditors
- Energy certificate manipulation (system far from being a success)

Consequences for business area

- Retrofit solution set up
- Business model set up
- Communication with local authorities
- Adjusted business model for associations + communication
- Political uncertaintly, local authorities role, changes
- Economic crisis hit the real estate area, switching costs

Threat of substitutes

Buyers

- Pay less than the market value - subsidies
 - Increased quality of life perceptible?
 - •Is it the real price?

Degree of rivalry

26

Key-issues for success

- Added value: should increase the property value
- Paid price: acquisition price + investment should be less than market average price
- Procedure: for developers, making easier the decision
- Communication and change process for existing associations

Critical issues

- Local people protect their business interest
- Economical performance in a permanently changing environment
- Decision in the actual form of the association is very complicate and time consumer

Success stories of the thermal retrofitting

- Started in 2009
- Applied examples shows that even this program, people believes that they pay more than the real price of retrofitting
- Owners suspect arrangements between local authorities and construction companies
- Cost sharing:
 - 20% of the cost supported by the owner
 - 30% local authority
 - 50% ministry of public works

Târgu Mureş, Ground+3 floors – Thermal rehabilitation and over-roofing

16 apartments (2-3 rooms), Refurbished 2007

- ✓ Over-roofing with living space
- ✓ External thermal insulation 10cm polystyrene
- ✓ Replacement of external doors and windows
- ✓ Re-working of wall surfaces
- ✓ Insulating hot water pipes
- ✓ Changing batteries in bathrooms
- ✓ Changing heating elements in apprtments

Costs:

Audit and design: 5750€ Works: 59000€ (3687€/ap)

- MDLPL 20000 €
- Local council 19500 €
- Owners 19500 € (1218€/ap)
- Estimated price 800 €/m2

Piatra Neamt - Thermal rehabilitation and over-roofing

45 apartments + 9 created by over-roofing Refurbished in 2007

- ✓ External thermal insulation (12cm polystyrene)
- ✓ Timber roof structure with LGS sheet covering
- ✓ PCV based window frames including balconies
- ✓ Exterior doors
- ✓ External finishing

Costs:

Audit: 6500€

Design: 12400€

Works: 300 000€

- Rehabilitation: 210 000€ (4666 €/ap)

-Over-roofing: 90 000€ (10000 €/ap

created)

-Estimated price 600 €/m2

Strategies for cost-optimal energy efficient and sustainable building retrofit

Market summary - Needs - Competition - Driving Forces - Keys & Critical issues - Success stories - Conclusions - Plans

Conclusions

- Needs exist only small stimulation can create good results
- New market rapid development possibilities
- Some financing programs for funds particular rules & complicate procedure (bureaucracy)
- Specific culture requires to fit the action plan to this aspect
- Misconceptions/Fears/Suspicions of the Owner Association" slow down the decision process

Strategies for cost-optimal energy efficient and sustainable building retrofit

Market summary - Needs - Competition - Driving Forces - Keys & Critical issues - Success stories - Conclusions - Plans

Plans

- Detailing a set of refurbishment solutions for certain case studies Balance of Environmental, Social and Economical sustainability goals to be reflected.
- Market study extended to Poland, Czech Republic (East Germany a retrofit bonanza & Finland a comparative basis) – almost ready.
- Survey for consumer attitude to sustainability goals (based on VTT-ProP) hierarchy) - ongoing.
- Looking for real project cases. Developing network of interested parties industry, authorities and research financing.